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Abstract. For rotor design applications, such as wind turbine rotor or Urban Air Mobility (UAM) rotorcraft and flying car

design, there is a significant challenge in quickly and accurately modeling rotors operating in complex turbulent flow fields.

One potential path for deriving high-fidelity but low-cost rotor performance predictions is available through the application

of data-driven surrogate modeling. In this study, an initial investigation is undertaken to apply a proper orthogonal decompo-

sition (POD) based reduced order model (ROM) for predicting rotor distributed loads. The POD ROM was derived based on5

computational fluid dynamics (CFD) results and utilized to produce distributed pressure predictions on rotor blades subjected

to topology change due to variations in twist and taper ratio. Rotor twist, θ, was varied between 0◦, 10◦, 20◦, and 30◦ while

taper ratio, λ, was varied as 1.0, 0.9, 0.8, and 0.7. For a demonstration of the approach, all rotors consisted of a single blade.

The POD ROM was validated for three operation cases; a high pitch or a high thrust rotor in hover, a low pitch or a low thrust

rotor in hover, and a rotor in forward flight at a low speed resembling wind turbine operation with wind shear. Results showed10

highly accurate distributed load predictions could be achieved and the resulting surrogate model can predict loads at a minimal

computational cost. The computational cost for the hovering blade surface pressure prediction was reduced from 12 hours on

440 cores required for CFD to a fraction of a second on a single core required for POD. For rotor in forward flight cost was

reduced from 20 hours on 440 cores to less than a second on a single core. The POD ROM was used to undergo a design

optimization of the rotor such that figure of merit was maximized for hovering rotor cases and the lift to drag effective ratio15

was maximized in forward flight.

1 Introduction

In fields such as wind energy and UAM, it is common practice for the rotor analysis to include fluid-structure interactions, struc-

tural dynamics, vehicle component sizing, topology optimization, flight simulation, etc. For each of these tasks, it is essential

that there exist a model capable of providing load predictions to a high degree of fidelity for a variety of rotor configurations.20

One approach to obtaining these load predictions is through mid-fidelity design tools. Over the years, numerous such modeling

softwares have been developed. For UAM, examples include Comprehensive Analytical Model of Rotorcraft Aerodynamics

and Dynamics (CAMRAD) (Johnson, 1992), Rotorcraft Comprehensive Analysis System (RCAS) (Saberi et al., 2004), or

Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM) (Quackenbush et al., 1999). Additionally, modeling
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softwares such as Fatigue, Aerodynamics, Structures, and Turbulence (FAST) (Jonkman and Buhl Jr, 2005), BLADED (DNV,25

2018), and HAWC2 (Larsen and Hansen, 2007) have been developed for wind turbine design applications. Through leveraging

these analysis tools numerous sub-topics of interest have been investigated ranging from multi-rotor performance prediction

(Liew et al., 2020; Conley and Shirazi, 2021) to aeroelasticity (Kecskemety and McNamara, 2016; Yeo et al., 2018). When

applied to the early stages of rotor optimization, typically mid-fidelity tools provide an excellent path to identifying a limited

design space from which an optimal solution can be obtained. Yet, there still remain significant limitations to mid-fidelity30

analysis tool sets when applied to rotor operation in complex flow fields. These limitations become particularly pronounced

once considering that many UAM rotorcraft will likely have rotors operating in vortex-dominated highly turbulent flow fields,

particularly those proposed to operate in multi-rotor configurations or in close proximity to buildings. For wind energy appli-

cations, a greater subtopic of concern relates to the optimization of grid layout for wind farms as well as the aeroelastic effects

of turbines in yaw. As more rotorcraft and wind turbine designs begin to account for these operating conditions, uncertainty in35

mid-fidelity tools has led to a broadening of optimal design spaces found in the early stages of the conceptual design process.

One potential solution for narrowing this design space is to apply computational fluid dynamics (CFD). Numerous solvers

(mStrand (Lakshminarayan et al., 2017), SU2 (Morelli et al., 2021), OpenFoam (Nuernberg and Tao, 2018), etc.) have been

developed to help streamline the process of CFD simulation of rotors. Large Eddy Simulation (LES) (Smagorinsky, 1963) and

Detached Eddy Simulations (DES) (Spalart, 1997) studies of isolated rotors have shown to be capable of resolving flow fields40

relevant for performance and loads of isolated rotors in hover/forward flight (Fitzgibbon et al., 2020), during rotorcraft pitch up

maneuvers (Abhishek et al., 2011), and rotor-ship wake interactions (Crozon et al., 2018). In a recent publication by Sood et al.

(2022), high-fidelity LES simulations were completed for five different inflow conditions of the Lillgrund wind farm. Close

comparisons were then drawn between CFD computations and field measurements for turbine power production, loading, and

wake recovery. However, for engineering tasks that require hundreds if not thousands of iterations such as design optimization45

full CFD modeling is not a viable option. Despite significant advancements in both the hardware (Chau, 2019) and software

(Wang and Zhai, 2016) rotorcraft CFD simulations still remain too computationally expensive for many engineering tasks. For

a detailed comprehensive CFD analysis of a full-scale rotorcraft or wind turbine, computational expense commonly requires

simulation on large cluster computers with run times ranging from days to weeks (Neerarambam et al., 2021). It is this resource

and time limitation that has led to a desire for devising CFD-based surrogate models.50

While currently available computational resources limit the number of CFD simulations during conceptual design to a few

tens of runs, recent studies have shown that by retaining a truncated subset of dominate flow features a useful and meaningful

reduced order model (ROM) can be constructed (Colella et al., 2021; Liu et al., 2021). In a recent example from Sengers et al.

(2022), LES simulations were first completed for a single isolated turbine where rotor configuration was modeled numerically

with an actuator disk. Simulations were completed while varying inflow conditions into the actuator disk. Solutions from55

these LES simulations were leveraged to construct a ROM which mapped inflow conditions to overall normalized wake center

deficit, vertical position with respect to hub height, and vertical extension of the wake. A comparison of the ROM to new LES

simulations showed ROM was capable of producing accurate predictions for parametric definitions of the turbine’s wake. Yet,

while such a ROM may be useful for optimizing grid layout of wind farms, for the design optimization of the rotor itself greater
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emphasis must be placed on achieving an accurate representation of the rotor’s surface load distribution. Such a ROM would60

allow for the consideration of peak rotor loading, rotor radial loading, rotor stall, etc. all in the earliest stages of the rotor design

process.

As such, in this study, an example of a ROM-based surrogate model for distributed surface loading on rotors will be pre-

sented. This ROM was constructed in a two-step process. First, a low rank subspace is identified. This subspace can be found

using a variety of modal decomposition methods such as Proper Orthogonal Decomposition (POD), Dynamic Mode Decom-65

position (DMD) (Schmid, 2010), Spectral Proper Orthogonal Decomposition (SPOD) (Sieber et al., 2016), etc. These methods

are all based on the assumption that the flow field of interest can be decomposed to a limited set of dominant characteristics

(Ma et al., 2000). In the present work, the POD algorithm was utilized to identify a low rank subspace. Once a subspace was

identified an interpolation scheme is then applied to make predictions. Recent work has shown that these ROM-based surrogate

models are able to retain a high degree of fidelity while operating at a minimal computational cost. Examples of areas of ROM70

application include heat transfer (Chen et al., 2015), combustion (Chang et al., 2019), turbine blade modeling (Jin et al., 2017),

boundary layer ingestion (Cinquegrana and Vitagliano, 2021), and store separation (Peters et al., 2021, 2022a, b).

While previous studies have applied POD, DMD, or NN based ROMs to isolated bodies and airfoils with varying inflow con-

ditions, there have been few demonstrations to modeling surface pressure distributions for three-dimensional moving bodies,

particularly once variation in surface topology is considered. A significant contributing factor for this absence of literature is75

that data-driven modeling relies heavily on the assumption that dominant physics for the system of interest are comprehensively

captured in the training dataset. For this reason, many applications of CFD based data-driven ROMs, while valuable demon-

strations rely on either two-dimensional flows (airfoil load prediction (Yonekura and Suzuki, 2021)), steady-state assumptions

(supersonic flows (Dreyer et al., 2021)), or systems where symmetry/periodicity boundary conditions can be leveraged (rotor-

stator modeling (Cizmas and Palacios, 2003)) such that CFD computational expense is minimized and the number of sample80

points can be maximized. For rotorcraft applications of CFD based data-driven ROMs, whether they be POD, DMD, or even

neural network (NN) based, the computational expense is comparatively large resulting in a minimal sampling of the domain.

As such, the POD ROMs demonstrated in this study will need to extract meaningful information from a relatively small number

of samples.

Typically, there are two ways in which a parametric interpolation based POD ROM could fail to produce meaningful predic-85

tions. The first potential situation could be through the POD algorithm being incapable of representing the space with a limited

expansion of modes. Ultimately POD mode retention could be expanded to several hundreds of modes. However, this high

mode count often results in more challenging interpolations. Typically, while initial POD modes can smoothly be correlated

to design parameters, higher mode numbers are often more stochastic resulting in more challenging interpolations. The other

way a POD ROM may fail to provide accurate predictions is through under-sampling a sufficiently non-linear design space. If90

a design space is found to be highly non-linear, then the total number of CFD simulations required to derive a model may no

longer warrant or even justify the construction of a ROM. Analogous limitations exist for DMD and NN which often require

very large data sets for training and significant computing resources. However, ROMs based on DMD, POD, or NN possess

similar accuracy in reproducing CFD data (Peters et al., 2022c; Raissi et al., 2019).
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To investigate POD ROM capability in the field of rotor pressure load predictions, a POD ROM was derived and tested95

under three operating conditions for a single, isolated blade. The isolated blade was chosen in order to replicate wind turbine

or helicopter rotor operation at a reasonable computational cost. Isolated rotor blades however have been employed in both

experimental (Ramasamy et al., 2009) and theoretical studies for detailed investigation of characteristic features such as the

tip vortex. With each demonstration case, design space complexity was increased to test POD ROM reconstruction and in-

terpolation capability. In each scenario, the rotor blade’s taper ratio and twist were varied to construct 16 CFD simulations100

using the OVERFLOW solver (Buning et al., 1988). A POD ROM was constructed from these cases, validated against three

additional combinations of taper and twist, and then employed to achieve a design optimization of the rotor blade. In this work,

for hovering rotor demonstration cases figure of merit and slices for the coefficient of pressure at the r/R = 0.95 radial station

of the blade will be used as metrics for ROM prediction accuracy. For the forward flight demonstration case, both lift to drag

effective ratio and integrated sectional coefficients of thrust are used as the metric for ROM prediction accuracy. With these105

three ROMs, the study aims to provide insight into the capabilities of POD ROMs for distributed load predictions and rotor

performance prediction given a variation in blade topology over a variety of standard rotor operating conditions.

The rest of this paper is organized as follows. The CFD simulation case setup, grid generation methods, and optimization

algorithm are all outlined in the Numerical Approach section first. The ROM Approach section then overviews the modal

decomposition and interpolation schemes used in this work. The Results and Discussion section provides an overview of110

the study’s findings. Results are split between hovering rotor and forward flight demonstration cases. In the final section,

Conclusions and Outlook, closing remarks are summarized along with future applications of work.

2 Numerical Approach

Before this study could begin, a procedure was required for efficiently generating rotor blade grids given a linear variation in

the parameters of taper ratio and twist. This procedure was necessary not only for generating grids for CFD simulation but115

also for applying POD ROM for iterative design optimization. As such, a procedure was developed over the course of this

study which allows for a parametric definition of rotor blades. The procedure starts by reading a single input file that holds the

definition of rotor blade’s twist (θ), taper (λ), sweep, dihedral, and airfoil cross-section at a number of span-wise stations. These

input file formats can either be obtained from National Aeronautics and Space Administration (NASA) Design and Analysis

of Rotorcraft (NDARC) (Johnson, 2015) geometry files or from CAMRAD. A PLOT3D (Walatka, 1990) file is then generated120

for the rotor’s Cartesian surface grid. With the meshing algorithm defined, the study began generating the 16 blades, as defined

in Table 1 and 3 validation grids, as outlined in Table 2. Each blade consisted of 276 chord-wise and 128 span-wise nodes for

a total surface cell count of 34,944. All 16 blades had a mean chord of 1 ft and a radius of R = 10 ft. Examples of blades from

cases c1 and c16 can be seen in Fig. 1.

Each rotor was limited to a single blade to simplify rotor geometry and limit the influence of variables not represented in the125

POD ROM from affecting blade pressure distributions. It should be noted that this geometric constraint is not consistent with

blade counts found on rotorcraft and thus typical rotor performance for UAM aircraft may not be represented in the current
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study. Nonetheless, this geometric constraint still allows for pressure distributions representative of those found for blades in

hover and forward flight to be modeled thus allowing the study to efficiently identify a POD ROMs applicability to the field

of rotorcraft engineering. The selected geometries produce a constrained domain within which a POD ROM can be tested for130

ability to reconstruct typical load distributions found on blades and model their evolution as a blade’s twist and taper ratio

varies.

(a) c1

(b) c16

Figure 1. Comparison of two geometries used in this study. Image (a) shows θ = 0◦ & λ = 1.0. Image (b) shows θ = 30◦ & λ = 0.7.

To generate closed surfaces for the rotor’s root and tip faces, the Chimera Grid Tools’ (CGT’s) WINGCAP software was

used (Chan, 2005; Rogers et al., 1998). The CGT is a tool-set developed by NASA for the purpose of pre- and post-processing

of chimera overset grids (Benek et al., 1986), particularly for use in NASA’s OVERFLOW CFD solver. Volume grids were135

generated from the surface meshes using CGT’s hyperbolic grid generator HYPGEN (Chan and Buning, 1993) software. An

example of the HYPGEN generated extrusion is shown in Fig. 2. Total near body volume cell count for each case is 3.5 million.

Normal spacing at the surface was at a y+ of 1 and growth was limited to a rate of 1.2. A Cartesian background mesh was then

constructed with pressure farfield boundary conditions extending 15 rotor radii from origin. The SAMcart solver was used for

the background mesh.140
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Figure 2. Example of blade volume mesh generated for rotor geometry c1 shown as slices of volume mesh at radial positions of x/R = 0.30,

0.57, and 0.86. Surface grids generated for rotor tip and root faces are additionally depicted.

For numerical simulation, the OVERFLOW CFD solver was used. OVERFLOW was developed by NASA and uses a series

of structured, overset grids to model fluid flows. For turbulence modeling, the one equation Spalart-Allmaras model was used

with curvature corrections (Spalart and Allmaras, 1992). Second order temporal and spatial accuracy was used. To assist in case

setup, the CREATE-AV Helios modeling tool was used (Wissink et al., 2016; Sankaran et al., 2010). The Helios code takes

a modular approach to numerical simulation where users are allowed to interchange meshing and solver algorithms and thus145

allows for a broader flexibility for the code to be applied to a variety of topics (Wissink et al., 2018; Anusonti-Inthra, 2018; Ho

et al., 2019). For the hovering rotor cases, 5 startup revolutions were completed before extracting rotor surface pressures. For

the forward flight cases 8 rotor revolutions were completed before extracting rotor surface pressures. Startup revolutions were

selected such that periodic solutions were obtained. Clearly, because of these requirements the cost of the CFD simulations is

high. Each forward flight CFD simulation required 12 hours to compute on 440 cores.150

For the high thrust hovering rotor, 16 CFD simulations covering geometries outlined in Table 1, were completed with a

fixed collective of 8◦. These cases were used to construct the first POD-ROM. This ROM was then validated against the three

additional validation rotor geometries outlined in Table 2. For the low thrust hovering rotor, CFD simulations were again

completed covering geometries outlined in Table 1 with a fixed collective of 4◦. A POD ROM-based surrogate model was

constructed and validated for all three validation geometries. For rotor in forward flight the same simulations were completed155
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with a fixed collective of 4◦ and free stream flow of M = 0.1 moving in the positive x-axis direction. For all CFD simulations

a tip Mach number of Mtip = 0.5 was used. For this study, no cyclic pitching or flapping motion was prescribed for the blade.

Additionally, the rotor is not trimmed for the balancing of forces or moments, and all rotors are considered to be rigid rotors.

Table 1. The 16 geometries used for derivation of POD-ROM in both hover and forward flight.

Twist(deg) θ

0◦ 10◦ 20◦ 30◦

1.0 c1 c2 c3 c4

Taper Ratio λ 0.9 c5 c6 c7 c8

0.8 c9 c10 c11 c12

0.7 c13 c14 c15 c16

Table 2. The 3 geometries used for validation of POD-ROM in both hover and forward flight.

Geometries Twist (deg) Taper

v1 15◦ 1.0

v2 0◦ 0.85

v3 15◦ 0.85

The surrogate model based on POD ROM was subsequently used to optimize the blade’s twist and taper ratio such that

either hovering figure of merit (FM ) or forward flight lift to drag effective ratio (L/De) would be maximized. To undergo this160

optimization, three blade surface grids were first generated. The first grid was generated using the current iteration’s solution

for optimal twist and taper ratio. Two additional grids were then generated, the first used a 0.1% increase in twist while the

second used a 0.1% increase in taper ratio. Solutions for distributed pressures were obtained using the derived POD ROM from

which loads were integrated and used to solve for either FM or L/De of each blade. First derivatives for either FM or L/De

with respect twist and taper ratio were solved using a first order Euler approximation and used to select new optimal twist and165

taper ratio through the usage of steepest descent algorithm. A criterion of 0.1% change in solution was selected as a stopping

condition.

In this study, FM was computed using Eq. 1. To compute both coefficient of thrust, CT , and coefficient of torque, CQ, blade

distributed surface pressure solutions were numerically integrated. For rotor in forward flight, integrated sectional coefficients

of thrust were plotted from azimuth 0◦ to 360◦. While viscous CFD solutions were obtained in this study, shear stresses were170

not utilized when computing integrated loads for either POD ROM or CFD. Given that the objective of this study was to
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provide an initial investigation of POD ROM distributed load prediction capability for rotor blades, expanding POD ROM to

include multi-directional shear loads was not warranted in the current work.

FM =
C

3/2
T

CQ

√
2.0

(1)

For the rotor in forward flight cases, L/De was computed by first integrating distributed pressure loads for mean rotor lift175

L during the blades rotation. Distributed pressure loads were then integrated to find mean power P required by rotor during

blades rotation. Once again, viscous loads were not utilized when computing integrated loads for either the POD ROM or CFD

predictions. The forumlation used to compute L/De is shown in Eq. 2 where v is forward velocity.

L/De=
Lv

P
(2)

3 ROM Approach180

In this section, the methodology used for ROM-based surrogate model construction will be outlined. The method used in this

study consisted of two steps. The modal decomposition method will be reviewed first. Next, the interpolation approach used in

this study to construct the surrogate model from the ROM POD modes will be reviewed.

3.1 Proper Orthogonal Decomposition

The POD was introduced as a method for extracting a low dimensional subspace which captures the majority of the variance,185

often referred to as energy, from the full phase space (Holmes et al., 1996). While there exist numerous formulations for POD,

in this paper the snapshot method as introduced by Sirovitch (Sirovich, 1987) will be used. In this approach any scalar of the

flow field can be represented by the sum of the scalar’s time-average, ū(x), and n orthonormal POD modes Φi(x) times the

temporal coefficient ai(t). In this study, surface pressure solutions were used to formulate the snapshot matrix. The relationship

is shown below, where ai(t) =< (u(x, t)− ū(x)),ΦT
i (x)>.190

u(x, t) = ū(x) +
n∑

i=1

ai(t)Φi(x) (3)

To obtain Φi(x) the a snapshot matrix u(x, t) is first formed. In this matrix, the row space holds spatial information while

the column space holds temporal information. The perturbation matrix, u(x, t)′, is calculated by subtracting out the snapshot

matrix’s time-average. The POD modes are then found through a single value decomposition (SVD) of u(x, t)′, where the

subset of modes Φi are extracted from U. In Eq. 4, U contains the eigenvectors for u(x, t)′ times it’s transpose, VT contains195

the eigenvectors of the transpose of u(x, t)′ times itself and Σ contains the singular values of the SVD.

u(x, t)′ = UΣVT (4)
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The process of reducing the dimensionality of the data-set down to a low rank subspace has been described in numerous

publications (Brunton and Kutz, 2019; Holmes et al., 1996). For the present study, the process of selecting an adequate subspace

was based on energy retention. For this approach, the number of modes which must be retained is dependent on the behavior200

of the singular values, s, found in the diagonal of the Σ matrix. Given that s is little more than the square of the eigenvalues of

< u(x, t)′,u(x, t)′T >, this then serves as a representation for how much of the snapshot matrix’s energy, E, is being captured

by each mode. The amount of energy being captured in each mode can then be visualized by plotting the ratio of each singular

value si to the sum of s denoted at s̃. The objective is then to retain a subset of modes, n, such that Eq. 5 is satisfied.

E =
n∑

i=1

si

s̄
(5)205

Once a POD model of the form of Eq. 3 had been constructed for the surface loads of various cases, an interpolation scheme

is needed in order to make use of these modes for intermediate case predictions.

3.2 2-D Surface Map Interpolation

In order to produce a continuous representation of the temporal coefficients a two-dimensional mapping was constructed. Dur-

ing the construction of these mappings, the objective was to produce a continuous representation for the temporal coefficients.210

This continuous representation was provided by relating twist θ and taper ratio λ to the temporal coefficients ai(t).

ai(t) = F (λ,θ) (6)

Note that for the 2-D surface mapping method, it is an inherent requirement that the two variables selected combine to

produce a unique definition of each snapshot. In the case of this study, selection of interpolation parameters becomes trivial.

By selecting λ and θ as the mapping variables, any location on the snapshot matrix could be uniquely identified and a spline215

surface could be fit for each mode temporal coefficients. The advantage is that this method is relatively simple, accurate, and

computationally inexpensive to setup. There is no training requirement as in neural networks, or large matrix inversions to

make, and the user has a much greater degree of control over how the mapping can be constructed — whether a polynomial,

linear, or logarithmic fit depending on the prior knowledge of the problem in hand.

4 Results and Discussion220

In this section, the results for CFD simulation, the POD ROM reconstruction, and necessary validations of the ROM and surro-

gate models will be presented. Results are primarily split between the hovering and forward flight demonstration cases. These

two sections will be further split into three additional sections showing CFD simulation results, POD ROM reconstruction

results, and POD ROM validation results.
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4.1 Hovering Rotor Cases225

In the first two scenarios of POD ROM rotor blade modeling, an isolated rotor blade in hovering conditions is used. With these

two demonstration cases, the study was able to first test for the most basic operating conditions of which a rotorcraft-based POD

ROM would be required to model. For an isolated rotor blade in hover after the initial transients are removed time variance

can be neglected and thus the focus of the analysis is limited to POD ROM capability for accuracy of both reconstruction and

prediction of the spatial characteristics of the domain. This truncation of the time domain leads to the additional advantage of230

minimizing the size of the snapshot matrix required for the POD ROM to model. As opposed to time-varying systems, such as

rotor in forward flight, where numerous snapshots are required per sampling point of the domain to accurately capture the time

dynamics of each CFD simulation, for the hovering rotor only a single snapshot is required per sampling point. This relatively

small snapshot matrix both minimizes the computational expense of deriving the POD ROM and helps to limit information

content in the system thus maximizing the ability of each POD mode to retain a high percentage of the total energy.235

By reducing rotor collective to vary between high and low thrust hovering rotor scenarios there is an overall increase in

design space non-linearity and spatial information complexity within the domain. In this demonstration case, the influence

this increased complexity has on POD ROM capability to both replicate and predict rotor load distributions are investigated.

Evidence for the increased complexity of spatial information can be found when comparing rotor pressure distributions between

high and low thrust configurations. For the high thrust case, the rotor’s wake is convected downstream rapidly. This results in240

the rotor wake having a smaller degree of influence on the overall rotor pressure distributions. The coefficients of pressure were

taken at the r/R = 0.95 radial station on the rotor for case c4 (λ = 1.0, θ = 30◦) and are plotted in Fig. 3 (a) to demonstrate the

largely smooth variations in surface pressure of the blade. These relatively small gradients in surface pressure typically result

in smaller POD mode retention counts required to comprehensively represent the system.

This is in contrast to the low thrust hovering cases where distributed loads vary to a larger degree in the spanwise direction,245

particularly at the rotor’s tip, caused by the blade’s wake being convected away at a slower rate. As a result, there is a significant

increase in tip wake interactions with the rotor’s pressure distribution. Results for low thrust hovering rotor coefficients of

pressure at the r/R = 0.95 radial station for case c4 (λ = 1.0, θ = 30◦) are plotted in Fig. 3 (b). These results demonstrate that

non-linearity on coefficients of pressure distributions at the r/R = 0.95 radial station has increased.

This increase in complexity may lead to a significant modeling challenge for POD-based surrogate ROMs. As more spatial250

information is introduced into the domain, energy content may become distributed over a larger range of POD modes. Yet, for

an interpolation-based surrogate POD ROM to make accurate predictions of a domain a limited number of POD modes should

be retained. While initial POD modes can typically be related well to parameters of interest of the domain, modes associated

with higher mode counts tend to be stochastic making derivation of meaningful interpolation models rigors. Thus, by applying

the POD ROM to both high and low thrust hovering cases the study investigates the influence this increased spatial complexity255

has on the capability of the POD ROM to replicate the domain with a minimal POD mode retention count.

An alternative approach to distributed pressure load modeling could be to avoid modal decomposition methods altogether

and deploy a kernel-based learning method in the form of a convolutional neural network (CNN). A significant advantage
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Figure 3. Coefficients of pressure at r/R = 0.95 as computed through CFD for both high thrust hover (a) and low thrust hover (b). Comparison

is shown for sample geometry c4.

CNN models have over POD models is their ability to extract features from a data set at various scales and translations. Once a

flow feature is identified, such as either rotor vortex rings (Abras, Jennifer and Hariharan, Nathan S, 2022) or shockwaves (Liu260

et al., 2019), the feature can be either identified or replicated at various positions and scales within the domain of interest with

minimal computational effort. Given these characteristics, CNNs have historically shown relatively few limitations in their

capability to replicate training data sets in comparison to modal decomposition-based methods.

However, while CNNs have shown an enhanced capability to extract meaningful features from complex data-sets, there

exist significant challenges in deriving a network capable of utilizing these features for meaningful predictions. This chal-265

lenge becomes particularly pronounced when deriving CNN models from a sparse sampling of the domain. Typically, to learn

meaningful relationships between parameters of interest and the dynamics of the domain a sufficiently large sampling of the

domain must be obtained. Such large sampling may be possible in the case of either two-dimensional or three-dimensional

steady-state CFD simulations. Yet, for unsteady three-dimensional CFD simulations with multi-body motion, as is required

for UAM rotorcraft CFD modeling, computational expense greatly limits the capability to obtain the required sampling of a270

domain. Additionally, there is also a significant computational expense associated with deriving CNN models compared to

POD models. Both hovering rotor POD ROMs were derived in less than a second of computing time. Meanwhile, a CNN

derived by the study for a similar rotor performance prediction application required over twelve hours of computing time de-

spite being deployed to a graphical processing unit (GPU). Given the limited domain sampling capability associated with CFD
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simulations of the UAM field and significant computational expense associated with deriving CNNs, the application of ROM275

modeling techniques for UAM rotorcraft at present remains largely limited to modal decomposition-based methods.

In addition to an increase in complexity of the surface pressure distribution, there is a significant influence the rotor collective

has on the range of load distributions within the design space. When observing surface plots for the integrated figure of merit

(FM ) of both high and low thrust demonstration cases, Fig. 4, a series of key observations can be drawn. First and foremost

is the increased range of FM , and thus increased range of pressure distributions, the POD ROM is required to model. For the280

rotor in high thrust hover FM varies from 0.65 to 0.73. Yet, by decreasing rotor collective the range of FM for the low thrust

hovering rotor nearly doubles resulting in FM varying from 0.45 to 0.67. Note, the minimums and maximums for the domains

are found from the sparse CFD simulation sampling of the domain and may not necessarily reflect true local optimal solutions

of the respective domains.

Based on the limited number of CFD runs (16 for each case), Fig. 4 also demonstrates how reducing rotor collective can lead285

to an increase in design space non-linearity. In Fig. 4 (a), gradients of FM with respect to θ and λ are shown to be minimal.

The FM is shown to have a near-uniform decrease radially from the local optimal in the design space thus resulting in a largely

linear relationship between FM and the rotors λ and θ. For the high thrust rotor maximum FM can continuously be found

near θ = 20◦ as λ goes from λ= 1.0 to λ= 0.7. For high thrust hovering rotor, local optimal of FM = 0.7307 is found at λ =

1.0 and θ = 20◦ through sparse sampling of the domain with CFD simulation.290

As collective is decreased for the low thrust rotor FM , Fig. 4 (b), FM is shown to be both varying non-uniformly radially

from the local optimal and have a varying local optimal θ as λ goes from 1.0 to 0.7. When λ= 1.0 local optimal θ is found to

be around θ = 10◦ while λ = 0.7 results in a local optimal twist of θ = 30◦. Thus, λ and θ are shown to have varying, non-linear

influences over the domain of interest. While this increase in non-linearity will not lead to deterioration in the reconstruction

capabilities of POD ROM, as it does not necessarily produce more complex spatial information, it will ultimately create a295

more challenging modeling requirement for POD ROM to produce accurate distributed load predictions. The characteristic

of having multiple variables with widely varying degrees of influence on the system is commonplace for many practical

rotorcraft applications including hysteresis modeling, aeroelasticity, controls, etc. If a multi-variable data-driven model is to be

successfully derived for rotorcraft applications it must be capable of efficiently extracting the relationship each design variable

has with rotor surface loads, whether that relationship is linear, quadratic, logarithmic, etc. For low thrust hovering rotor, local300

optimal of FM = 0.6675 is found at λ = 1.0 and θ = 10◦ through sparse sampling of the domain with CFD simulation.

4.1.1 Hovering ROM Reconstruction

After completing all 16 high thrust hovering rotor CFD simulations, solutions for surface pressure were compiled to form a

single snapshot matrix. The POD algorithm was then used on this snapshot matrix after which an energy retention criteria

was prescribed as outlined in Eq. 5. Percent energy retention per POD mode retention count can be found in Fig. 5 (a). Given305

the limited number of snapshots used to define to design space, and thus increased ability for POD modes to retain energy, a

relatively large energy retention criteria of 99.9% was set after which it was determined that only 8 POD modes were required to

produce the desired energy retention. This procedure was then repeated for the low thrust rotor demonstration case and results
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Figure 4. Surface plot of FM with respect to θ and λ for both high thrust hover (a) and low thrust hover (b) based on the 16 CFD runs for

each case.

for percent energy retention per POD mode retention count can be found in Fig. 5 (b). Results of this analysis demonstrated

that despite the increase in complexity of the spatial information in the domain, the POD algorithm still appears to be capable310

of efficiently capturing this information in a limited mode retention count.

Once a POD mode retention count of 8 was selected, POD modes were projected back to the domain to evaluate POD ROM

reconstruction capability. In evaluating load reconstruction capabilities of surface pressure distribution for case c4, shown in

Fig. 6 for both collective cases of hover, it can be seen that loads are being modeled with a high degree of fidelity in comparison

to CFD. Pressure coefficient distributions at the r/R = 0.95 radial station are shown to be correctly accounted for with the315

reduced representation. The maximum percent error between CFD and ROM surface pressures for all 16 reconstructions for all

radial stations was 1%. This deviation for both high and low thrust hovering cases was located at the stagnation location near the

r/R = 0.95 radial station of the blade. Historically, modeling flow features with large gradients through modal decomposition

techniques with minimum mode retention counts has proven challenging, particularly as these gradients move within the

domain. For the case of the hovering rotor, the largest pressure gradients in the domain occur at the stagnation location. The320

spatial position of this location on the blade then varies as a function of θ, λ, and r/R. Yet, despite these challenges, the results

of this study show that leading-edge gradients are captured with sufficient accuracy so that FM is still being modeled with

a high degree of fidelity. The maximum percent error for reconstructed FM for both high and low thrust hover was 0.41%.

Percent errors in FM reconstructions are shown in Table 3.
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Figure 5. Percent energy retention per retained mode count for 2, 4, and 8 POD modes. Results are shown for both high thrust hover (a) and

low thrust hover (b).

Figure 6. Comparison between POD ROM and CFD for slices of coefficient of pressure at r/R = 0.95. Comparison is shown for sample

geometry c4 in both high thrust hover (a) and low thrust hover (b).
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Table 3. Maximum percent error between CFD and POD ROM computed FM for geometries c1 to c16.

Twist(deg) θ

0◦ 10◦ 20◦ 30◦

1.0 0.20 0.36 0.19 0.04

Taper Ratio λ 0.9 0.06 0.09 0.07 0.16

0.8 0.01 0.10 0.12 0.41

0.7 0.11 0.07 0.08 0.08

4.1.2 Hovering ROM Validation325

After constructing the POD ROM and comparing reconstructs to CFD solutions, the study then moved to quantify POD ROM

predictive capabilities for the geometries outlined in Table 2 for both high and low thrust demonstration cases. This validation

was completed in two steps. First, distributed coefficients of pressure were compared between POD ROM prediction and CFD

simulation after which these loads were integrated to identify FM . When comparing surface pressure distributions for both

high and low thrust hover, shown in Fig. 7, it was found that with a minimum mode count the POD ROM was capable of330

providing high-fidelity full distributed load predictions for all three validation geometries. Surface pressure predicted error

never exceeded 1.5% error compared to the CFD simulation in all validation comparisons.

These predicted surface pressures were then integrated to find FM . When comparing this FM to CFD for the high thrust

hover cases it was found that for all three validation geometries percent error never exceeded 1%, thus providing strong

evidence that a POD ROM can be efficiently deployed to model a rotor blade’s full distributed load with a high degree of335

fidelity. Summary of prediction capabilities for POD ROM is shown in Table 4.

Table 4. Summary of percent errors in coefficient of thrust, torque, and figure of merit predictions using POD ROM derived for low thrust

hover.

Geometries CT CQ FM

v1 0.47% 0.62% 0.09%

v2 0.03% 0.81% 0.77%

v3 0.80% 0.84% 0.37%

However, the same level of fidelity in integrated load comparison was not achieved once the rotor collective was decreased.

While percent error for validation geometry v1 was limited to 0.5%, the same level of fidelity was not achieved for validation

geometries v2 and v3 as shown in Table 5. Surface pressure prediction errors once again never exceed a maximum of 1.5%

for the low thrust hover. Yet, this error is shown to now occur over a sufficiently larger region of the blade thus resulting in340
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Figure 7. Comparison between POD ROM and CFD for slices of coefficient of pressure at r/R = 0.95. Comparison is shown for validation

geometry v3 in both high thrust hover (a) and low thrust hover (b).

a significant increase in integrated load error, raising FM prediction error from 0.77% and 0.37% for cases v2 and v3 of the

high thrust hover to 4.26% and 4.25% for the low thrust hover. Results of the low thrust rotor case show that the capability of

a POD ROM to make accurate load predictions is highly dependent on how well-sampled is the domain of interest.

While this conclusion may be intuitive, properly achieving a level of sufficient sampling is not. Even in this relatively simple

demonstration, it has been observed that by simply varying the rotor’s collective there became a significant increase in design345

space complexity. While this increase in complexity was not limiting to POD ROM reconstruction capabilities, it was shown

to have a significant deterioration in POD ROM prediction capabilities. Thus, as the design space complexity increased and

domain sampling remained the same, there became an under-sampling of λ in the low thrust hover domain. These results

highlight how often this task of achieving sufficient sampling of a domain may become an iterative task, requiring a further

refinement of the sampling of the domain. To construct a more accurate ROM in the case of low thrust hover, further sampling350

with new λ in this domain is required.

Yet, even with the limited sampling on the domain the POD ROM is still providing reasonably accurate predictions once

accounting for the significant reduction in computational expense in evaluating each validation case. For both high and low

thrust hover, surface pressures as computed by CFD required 12 hours of computing time across 440 cores. Meanwhile, the

POD ROM was capable of making comparable predictions of surface pressures in just a fraction of a second on a single core.355

In addition, prior CFD sampling of the low thrust hover domain indicated that local optimal FM was consistently located at λ

= 1.0 and thus resulting in an optimization dependent on finding an optimal θ. For the case of low thrust hover, it was identified
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Table 5. Summary of percent errors in coefficient of thrust, torque, and figure of merit predictions using POD ROM derived for low thrust

hover.

Geometries CT CQ FM

v1 0.23% 0.15% 0.49%

v2 0.80% 2.94% 4.26%

v3 1.65% 1.69% 4.25%

that the POD ROM was capable of providing high fidelity predictions for variations in θ. Given this prior knowledge of the

domain and the significant reduction in computational expense, it became possible to directly apply this POD ROM to undergo

a design optimization of the rotor blade to derive a local maximum of FM . Results showed that a optimal geometry of θ =360

21.7◦ and λ = 1.0 for high thrust hover and θ = 10◦ and λ = 1.0 for low thrust hover could be found while taking 1 minute of

compute time on a single core. A total of 20 iterations were required to obtain the optimal solution. These results show that by

sampling a given design space a POD ROM can be efficiently derived such that a low cost and accurate model of the blade’s

surface pressures can be obtained and practically deployed to a relevant rotor design task.

Figure 8. Surface plot of FM with respect to θ and λ as computed through POD ROM derived for high thrust hover (a) and low thrust hover

(b).
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In addition to providing an efficient means for identifying local optimal positions within a domain, the significant reduction365

to computational expense additionally provides the capability to efficiently obtain an increased understanding of the design

space of interest. Given the high expense of CFD modeling and only a limited sampling of any domain of interest can be

achieved. Yet, the results of this study have demonstrated how this limited sampling can be leveraged to obtain highly accurate,

low-cost models capable of providing an increased understanding of the domain of interest. When analyzing surface plots for

FM as computed via CFD, only a limited representation of the domain can be achieved. However, by leveraging a validated370

POD ROM orders of magnitude more sampling points of the domain can be achieved, thus producing an increased resolution of

the domain of interest. To demonstrate this capability, 900 additional samples of the domain were obtained via surface pressure

predictions provided by the POD ROM and blade geometries generated through the study’s grid generation algorithm. Results

of this analysis are presented in Fig. 8. While this further analysis indicated that local optimal of both CFD and POD ROM

representation of the low thrust hover domain results in the same local optimal FM , results for high thrust hover highlight how375

a POD ROM can be leveraged to help possibly identify previously unknown optimal locations within the design space.

4.2 Forward Flight

Up to this point in the study, the focus has been placed on hovering rotor blades. Given that these cases would produce a

pressure distribution that was invariant to changes in azimuth, the study could limit the focus of POD ROM modeling capability

to spatial information and thus limit the snapshot matrix to a set of 16 snapshots. However, for practical implementation, it is380

essential to demonstrate the applicability of ROM for both spatial and time varying domains. As such, in this section, a POD

ROM based surrogate model will be used for the prediction of load distribution of a rotor in forward flight.

There are numerous challenges that may arise for extending the POD ROM to rotors in forward flight. The most prevalent

of which is the increase in non-linear relationship between design variables and surface pressures. To construct contour plots

shown in Fig. 9, CT is computed locally at each radial station of the rotor at azimuth increments of 4.5◦. As shown in Fig. 9,385

case c4 (λ= 1.0,θ = 30◦) and case c5 (λ= 0.9,θ = 0◦) have widely differingCT distributions between azimuth of 0◦-60◦ and

a spanwise position up to r/R=0.50. This variation is a result of flow separation occurring as the blade travels counter clockwise

past zero azimuth position. From Fig. 9 it can be seen that through varying θ and λ, the degree to which flow will separate on

the blade will vary greatly. This flow separation and reattachment provide a significant increase in data-set complexity which

could potentially exacerbate the issue of POD ROM either not having enough sample points to make meaningful interpolations390

or not being capable of representing the system with low mode retention counts. The latter of these issues will be addressed in

the next section.

Contributing to the difficulties of modeling the forward flight case are differing influences λ and θ have on rotor L/De. In

Fig. 10 L/De as computed from integrated CFD modeled pressure loads are plotted versus λ and θ. Results demonstrate the

significant parabolic influence θ has over blade load distributions. Rotor L/De is shown to exponentially decrease as θ deviates395

from 10◦. This relationship is in contrast to the linear and relatively small influence λ has onL/De. For the hovering rotor cases,

POD ROM was shown capable of modeling a multi-variable system with each variable holding a varying degree of influence

over the system. Yet, the forward flight case provides a more extreme case of multi-variable modeling wherein there is clearly
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Figure 9. Contours of CT as the blade rotates from an azimuth of 0◦ to 360◦. Incoming flow is entering from the 180◦ direction while blade

is rotating counter clockwise.

Figure 10. Surface plot of L/De with respect to θ and λ as computed through CFD.
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a dominant term in the domain. Thus, the modeling challenge present in the forward flight case will include demonstrating that

while POD ROM is truncating low energy information from the system, it does not truncate interdependencies between input400

parameters and blade surface pressure distributions.

4.2.1 ROM Reconstruction

After all 16 forward flight, CFD simulations were completed, a single snapshot matrix was formed. To form this snapshot

matrix, solutions for rotor pressure distributions were written every 4.5 degrees such that sufficient resolution would be ob-

tained to model both separation and reattachment flow at the correct azimuth angles. As a result, for each CFD simulation,405

74 snapshots for rotor surface pressures were retained corresponding to a single snapshot matrix with 1184 snapshots. After

completing this snapshot matrix, the POD algorithm was used and the percent energy retention per POD mode retention count

was plotted and results are presented in Fig. 11. Given the significant increase in energy content in the system in comparison to

the hovering rotor cases, energy retention was decreased to 90% so as to avoid retaining an excessive number of POD modes.

It was identified that 16 POD modes were required to hit this energy retention criterion.410

Figure 11. Percent energy retention per retained mode count for 8, 16, and 32 POD modes.

After undergoing the POD algorithm and identifying the number of retained POD modes, the study projected these modes

back to the original snapshot matrix to identifiy how well the domain of interest is represented with the selected mode count.

Reconstructions and reconstruction error can be found in Figures 12 and Figures 13. This observation provides two important

conclusions. First, through the addition of flow separation and a varying azimuth angle, the energy content in the training

data-set has been expanded. This expansion in energy content has led to an increase in the required mode retention count to415

obtain independent reconstructions.
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Figure 12. Contours of POD reconstruction for the CFD data of Fig 9 (a) and error for CT as the blade rotates from an azimuth of 0◦ to

360◦. Incoming flow is entering from the 180◦ direction while blade is rotating counter clockwise.

Figure 13. Contours of POD reconstruction for the CFD data of Fig 9 (b) and error for CT as the blade rotates from an azimuth of 0◦ to

360◦. Incoming flow is entering from the 180◦ direction while blade is rotating counter clockwise.

The second important observation is that despite the expansion in energy content, POD is shown to be capable of representing

the full rotor disks of all 16 geometries with only 16 modes. For accurate reconstructions, modes retained were limited to

modes with reasonably smooth variation with respect to θ and λ. These results highlight that the POD algorithm appears to
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be exceptionally well suited for applications modeling periodic pressure distributions of rotors. The maximum percent error420

of CT found for reconstructions of all 16 geometries was found to be below 0.1%. Not only were sectional CT shown to be

modeled accurately, but also integrated values for L/De. Maximum percent error for reconstructions of all 16 geometries was

found to be 1.39%. Percent errors for all 16 geometries are outlined in Table 6. In the following section, the effect of increased

distributed load complexity on POD ROM prediction capabilities will be demonstrated.

Table 6. Maximum percent error between CFD and POD ROM computed L/De for geometries c1 to c16.

Twist(deg) θ

0◦ 10◦ 20◦ 30◦

1.0 0.0043 0.18 1.13 0.28

Taper Ratio λ 0.9 0.10 1.39 0.46 0.11

0.8 0.41 1.27 0.28 0.058

0.7 0.73 1.13 0.23 0.24

4.2.2 ROM Validation425

Further validation of POD ROM in forward flight predictions are produced for geometries v1, v2, and v3 and compared to

CFD simulation. Both prediction and error contours of sectional CT for all three validation geometries are summarized in Fig.

14. Results show that for all three validation cases, the POD ROM is making highly accurate predictions for CT across the

rotor’s complete cycle. For the vast majority of the motion of the blade, load distributions are being predicted almost exactly.

The distributed load prediction error is largely limited to the correct prediction of flow separation and reattachment azimuth430

angles positions. Results demonstrate that once the flow is either separated or attached, POD ROM is capable of producing

high-fidelity distributed load predictions. In addition to comparing rotor disk CT , rotor performance predictions via integrated

L/De are compared between CFD simulation and POD ROM emulation. Results, shown in Table 9, demonstrate that the POD

ROM is capable of providing highly accurate rotor performance predictions subject to both variations in twist and taper ratios

of the rotor. The maximum percent error never exceeds 0.50% compared to CFD simulation.435

These observations underline the two critical takeaways from this study. First, if a modal decomposition algorithm is to be

deployed for surface pressure modeling it must be capable of efficiently representing a complex domain. In this study, it has

been shown that for a wide variety of operating conditions the POD algorithm has shown to perform exceptionally well at

representing rotor surface pressures with minimum mode retention counts.

The second observation is that for the application of POD ROM to rotor surface pressure modeling, a sub-space must be440

sufficiently sampled such that the influence of design variables on load distributions is fully captured. It is important to note that

prior knowledge of a system, particularly when applied to UAM aircraft, may be limited. As such, prior understanding of the
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required sample size may not be held and an iterative approach must be taken to find the sufficient sampling size required for

a POD ROM. When investigating the high thrust rotor, this study found that 16 samples were sufficient to provide near-exact

predictions for surface pressures. Yet, when considering the low thrust rotor it was identified that while efficient reconstructions445

could be made through POD, more sampling conditions were required for accurate interpolations. This was due to an increase

in design space complexity with respect to λ.

For the case of a rotor in forward flight it was found that similar to high thrust rotors, the design space could be represented

exceptionally well with the 16 sampling cases. Yet, a deeper analysis of POD modes demonstrates that the total number of CFD

sampling cases required to model the rotor’s disk could be further reduced. In Fig. 16 a through c, variation of POD modes 1, 2,450

and 8 with respect to θ and λ are plotted. Results indicate that initial POD modes are linearly varying within the system while

for mode counts 8 and up the mode relationship to design variables becomes significantly non-linear. These results highlight

that the majority of the energy for the rotor in forward flight is varying linearly. To demonstrate the dominance of linearly

determined variance in the system, a POD ROM was derived from retaining just four sampling points, cases c1,c4,c13, and

c16, thus producing only a linear mapping. In Fig. 15, CT errors are presented for all 3 validation cases once only 4 sampling455

conditions are used. Results for sectional CT integrated from POD ROM surface pressure predictions are comparable to those

obtained when using all 16 CFD simulation sampling points. Results also demonstrate that an accurate representation of total

integrated lift can be obtained from the derived model with percent errors for rotor lift predictions never exceeded 1%, presented

in Table 7. Yet, while rotor lift predictions were shown to retain a high degree of fidelity, there was a significant deviation in

rotor power predictions. Thus, the results of this analysis indicated that rotor lift performance is dominated by linearly varying460

high energy POD modes while rotor drag performance is dominated by the non-linear low energy POD modes.

To improve power performance predictions of the POD ROM, the number of sampling points can be increased such that

an accurate representation of the non-linear variation of the low-energy POD modes can be obtained. It should be noted that

this non-linear variation is limited to variation in the θ space. As such to achieve this increased representation of low-energy

POD mode variation a combination of four θ and two λ sampling points were retained such that a POD ROM was derived465

from cases c1, c2, c3, c4,c13, c14, c15, and c16. Results for rotor performance predictions with this POD ROM are presented

in Table 8 and demonstrate that despite halving the number of sampling points from 16 to 8 similar levels of fidelity for rotor

performance predictions can still be achieved.

Just as in the hovering cases, there was a significant reduction in computational expense obtained when using the reduced

model. The POD ROM evaluation of rotor surface pressures across the entire periodic motion took a fraction of a second on a470

single core. Meanwhile, the CFD simulation required 20 hours on 440 cores. Once applied to design optimization of the rotor

such that local optimal L/De was obtained, an optimal solution was found within 10 minutes of computing time on a single

core. Results of this optimization, along with surface mappings constructed from obtaining 900 additional rotor performance

predictions of the domain, are plotted in Fig. 16 for both POD ROM derived from 4, 8, and 16 CFD sampling points. All three

optimization results hint at a significant capability of POD ROM to efficiently extract meaningful information from a domain of475

interest with limited sampling such that a greater understanding of the design space can be obtained. In Fig. 16 (d), it is shown

that despite only ever sampling the corners of the domain and thus deriving linear relationships the non-linear influence θ holds

23

https://doi.org/10.5194/wes-2022-95
Preprint. Discussion started: 20 October 2022
c© Author(s) 2022. CC BY 4.0 License.



over rotor performance can still be captured. While this influence is exaggerated in magnitude, resulting from inconsistencies

in modeling power requirements, the overall trend of this influence is preserved such that a previously unknown local optimal

solution in the area of θ = 12.4◦ and λ = 1 can be obtained. By doubling sampling size from 4 to 8, shown in Fig. 16 (e),480

results show that not only can a relevant local optimal design point be identified but a higher level of fidelity can be achieved

for performance predictions. Through further increasing sampling of the domain, shown in Fig. 16 (f), it is hinted that there

perhaps exist additional local optimal solutions within the design space as θ goes from 6◦ to 12◦ and λ goes from 0.7 to 1.

While POD ROM derived from all 16 sampling points identified a local optimal solution of L/De = 16.1 at θ = 6.21◦ and λ =

0.96, the second optimal solution found using this model was L/De = 16.0 at θ = 11.5◦ and λ = 1. The second optimal solution485

found using POD ROM derived from 16 sampling points was less than a single degree off from the optimal solution obtained

using only 4 sampling points.
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Table 7. Summary of percent errors in lift (L), power (P ), and L/De predictions using POD ROM from 4 training points (cases c1,c4,c13,

and c16).

Geometries L P L/De

v1 0.61% 62.4% 164%

v2 0.21% 0.45% 0.24%

v3 0.23% 64% 178%

Table 8. Summary of percent errors in lift (L), power (P ), and L/De predictions using POD ROM from 8 training points (cases c1, c2, c3,

c4,c13, c14, c15, and c16).

Geometries L P L/De

v1 0.30% 0.42% 0.13%

v2 0.09% 0.13% 0.04%

v3 0.17% 3.02% 3.26%

Table 9. Summary of percent errors in lift (L), power (P ), and L/De predictions using POD ROM from 16 training points.

Geometries L P L/De

v1 0.13% 0.23% 0.10%

v2 0.065% 0.30% 0.24%

v3 0.05% 0.47% 0.41%
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Figure 14. Contours of POD ROM prediction and error compared to CFD using 16 sample cases for rotor’s coefficient of thrust, CT , as the

blade rotates from an azimuth of 0◦ to 360◦. Incoming flow is entering from the 180◦ direction while blade is rotating counter clockwise.
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Figure 15. Contours of POD ROM prediction and error compared to CFD using 4 sample cases for rotor’s coefficient of thrust, CT , as the

blade rotates from an azimuth of 0◦ to 360◦. Incoming flow is entering from the 180◦ direction while blade is rotating counter clockwise.
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Figure 16. Left Column: Surface plots showing both linear and spline representation of POD modes 1, 2, and 8. Right Column: Surface

plot of L/De with respect to θ and λ as computed through POD ROM derived from 4 samplings points (d), 8 sampling points (e), and 16

sampling points (f).
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5 Conclusions

In this study, a POD ROM was applied to three demonstration cases for distributed pressure load predictions of a single blade

model rotor. Namely, these cases were high thrust hovering rotor, low thrust hovering rotor, and rotor in forward flight. For each490

of these cases, blade twist and taper ratio were varied such that 16 blade geometries were used. All three POD-based surrogate

ROMs were shown to produce highly accurate predictions for surface pressure distributions. For both high thrust rotor and

forward flight ROMs, the maximum integrated load coefficient prediction error was below 1%. The error was increased for

low thrust rotor ROM but still limited to below 4.3%. When POD ROM was implemented, the computational expense was

significantly decreased. For hovering rotor, the expense was reduced from 12 hours on 440 cores for CFD simulation to just a495

fraction of a second on a single core for ROM predictions. For forward flight rotor, the expense was reduced from 20 hours on

440 cores to less than a second on a single core when POD ROM was implemented. The expense was reduced to the extent that

a design optimization became feasible for both hovering and forward flight demonstration cases. Results demonstrated how a

POD ROM could be efficiently derived and deployed to model a complex design space to a high degree of fidelity. Additionally,

it was demonstrated how this surrogate model could be both leveraged to quickly find optimal design points within the space500

and used to gain an enhanced understanding of the domain of interest.

While the present work provides strong evidence for the feasible application of POD ROMs to wind turbines and rotorcraft,

there are still several future steps remaining for understanding POD ROM difficulties in rotor modeling. POD ROM modeling

of multiblade rotors with realistic geometries and control surface coupling could be attempted. Future steps should also be

taken to include wind farms operating with multiple rotor configurations. Additionally, CFD simulations should be completed505

using more complex operating conditions, such as turbulent inflows. By including these two modeling choices a more broad

range of length scales will be introduced into the training data-set thus testing POD-based surrogate ROMs capability for

efficiently extracting meaningful information in increasingly complex domains.
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